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Abstract

Circular intuitionistic fuzzy sets (CIFS) are a recent extension of intuitionistic fuzzy sets (IFS)
that can handle imprecise membership values effectively. However, its representation is lim-
ited to the space under the intuitionistic fuzzy interpretation triangle (IFIT). To address this, a
new generalization of CIFS called circular q-rung orthopair fuzzy sets (Cq-ROFS) is proposed,
extending the IFIT to cover a larger space of imprecision. Several relations and operations, in-
cluding algebraic operations for Cq-ROFS are proposed. In addition, modal operators and their
properties are then investigated.
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1 Introduction

An intuitionistic fuzzy set (IFS) is a set developed to handle problems related to imprecise and
incomplete information [7]. This set was introduced byAtanassov, which is a generalization of the
fuzzy set (FS) theory [30]. In FS, an element is marked by the presence of its membership (M)
degree or value (i.e., the non-membership (N ) degree is directly complemented to it). Mean-
while, in IFS, it is indicated by the presence of itsM andN degrees, where the sum of the two can
be less than one (i.e., any hesitancy or incomplete information is allowed). This makes IFS more
flexible and covers more uncertain events in the decision-making process. Several studies have
been conducted to expand the IFS, including in aggregation operators [26], and correlation coef-
ficient [17], to mention a few. In addition, many authors have applied the IFS to decision-making
problems [1, 13].

IFS has experienced numerous developments, especially in terms of the relationship between
M and N degrees. Initially, the IFS met the condition M + N ≤ 1. However, to cater for the
issue beyond this inequality (i.e., M + N > 1), Yager [28] then defined the Pythagorean fuzzy
sets (PFS), which changed the constraining relation to M2 + N 2 ≤ 1. Prior to that, Atanassov
[8] proposed IFS of second type to deal with the same issue. In 2011, Ciucci [15] introduced
the term orthopair as an alternative pair of M and N degrees. This gives rise to the generalized
orthopair fuzzy sets or called q-rung orthopair fuzzy sets (q-ROFS), which satisfy Mq +N q ≤ 1
for any q positive integers [29]. Vassilev et al. [25] defined a similar concept called IFS of q-type to
generalize the IFS. Note that this set can be reduced to IFS for q = 1, PFS for q = 2 and Fermatean
fuzzy sets (FFS),which is another special formof q-ROFSwith q = 3 [24]. Similarly, several studies
have explored the q-ROFS in the cases of aggregation operations [21, 2], similarity measures [16,
5], and some applications in decision-making problems [4, 3]. In general, the expression of q-
ROFS is acknowledged to provide greater flexibility and expressive power for decision-makers in
representing their preferences compared to IFS [29].

In 1989, IFS was expanded from what was originally a singular point into an area in an intu-
itionistic fuzzy interpretation triangle (IFIT) with a rectangular shape called interval-valued IFS
(IVIFS) [10]. The main motivation for this extension was to deal with imprecise of M and of N
values. Recently, Atanassov introduced another extension ofM andN interpretation into a circle
called circular IFS (CIFS) [9]. This set is characterized by a 3-tuple containing M, N , and radius
for each element. The difference with IFS lies in the existence of a circular imprecision area with
radius r. Compared to IVIFS, CIFS has an equidistant center point and boundary, which is not nec-
essarily true for IVIFS, as their boundaries can take various shapes and distances from the center
point. The CIFS theory is still at an early stage of its development. Hence, not much research has
been conducted on it. Initially, Atanassov [9] defined the basic relations and operations for CIFS
with r ∈ [0, 1], but then has been expanded to r ∈ [0,

√
2] to cover thewhole region in the IFIT [11].

Some studies on CIFS have been conducted, including distance measures [11, 14] and divergence
measures for CIFS [20]. Other than that, some extensions of decision-making models under the
CIFS environment have also been proposed recently, such as in technique for order preference by
similarity to ideal solution (TOPSIS) [18, 6], multiple criteria optimization and compromise so-
lution (VIKOR) [19], the integration of analytic hierarchy process (AHP) and VIKOR [23] and a
general multiple criteria decision making (MCDM)model [12]. Table 2 (see Appendix) provides
explanations for the abbreviations used in this article.

Although CIFS provides a better representation for modeling imprecise M and N degrees,
it is limited to the space of IFIT, where the sum of M and N degrees is bounded by one. This
limitation can be overcome by expanding the existing IFIT area in CIFS to include the larger space
provided by q-ROFS. Therefore, this paper aims to define a Circular q-Rung Orthopair Fuzzy Set
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(Cq-ROFS), which not only can model the imprecise M and N degrees but also cover a larger
space of imprecision, such thatM+N > 1 is allowed. We begin by systematically defining the set
form of Cq-ROFS, along with the applicable relations and operations. The following discussion
is focused on algebraic operations, including intersection, union, algebraic sum, and algebraic
product. We also examine several properties, such as idempotency, inclusion, and absorption,
to determine the behavior of these operations in Cq-ROFS. Additionally, we define some modal
operators to enrich the theory of Cq-ROFS.

This paper is structured as follows: Section 2 provides some preliminaries, including IFS, q-
ROFS, and CIFS. In Section 3, the proposed Cq-ROFS is defined. In Section 4, some modal op-
erators over Cq-ROFS are introduced. Finally, the conclusion and future studies are provided in
Section 5.

2 Preliminaries

Several foundational ideas are presented in this section, including IFS, q-ROFS, and CIFS for
any non-empty set X .

Definition 2.1. [7] An intuitionistic fuzzy set A (denoted IFS A) in X is defined as an object with
characteristics A = {⟨x,MA(x),NA(x)⟩|x ∈ X}, where MA : X → [0, 1] as the degree of membership
and NA : X → [0, 1] as the degree of non-membership that satisfy 0 ≤ MA(x) + NA(x) ≤ 1 for each
x ∈ X . The value of H(x) = 1 −MA(x) −NA(x) represents how uncertain (or non-deterministic) the
element x ∈ X to the IFS A. IFS(X) represents the collection of all IFSs.

Clearly, IFS can be reduced to FSwhenMA(x)+NA(x) = 1 orH(x) = 0 for every x ∈ X . Since
then, several extensions of IFS have been proposed by modifying the constraining relationship
between M and N degrees. One such extension is the q-ROFS, which is a generalization of IFS.

Definition 2.2. [29] A q-rung ortopair fuzzy set A∗ (denoted q-ROFS A∗) in X is defined as an object
with characteristics A∗ = {⟨MA∗(x),NA∗(x)⟩|x ∈ X}, where the function MA∗ : X → [0, 1] indicates
support for membership degree and NA∗ : X → [0, 1] indicates support againts membership degree of
x ∈ X which satisfy 0 ≤ Mq

A∗(x) +N q
A∗(x) ≤ 1 with integer q ≥ 1.

Note that, q-ROFS can be reduced to IFS for q = 1, PFS for q = 2, and FFS for q = 3 (see Figure 1).
The sumofM andN values represents the distinction between them. Specifically, IFS has the form
M+N ≤ 1, PFS has the formM2 +N 2 ≤ 1 and FFS has the form ofM3 +N 3 ≤ 1. By increasing
the value of q, the range of acceptable orthopair space widens which allows decision-makers to
express their beliefs about membership degrees with greater flexibility. These formulations align
with Yager’s [29] description of q-ROFS, which connects the M and N degrees at the q-th term
level (for integer q ≥ 1). It is obvious that the definitions provided above pertain exclusively the
scenarios where the degrees of M and N are precise. Atanassov [9] suggests a further extension
of IFS to capture the case where these degrees are imprecise. Under this extension, the M and
N degrees, which were initially single-value coordinates, are represented as circular areas called
CIFS.

Definition 2.3. [9] A circular intuitionistic fuzzy set Ar (denoted CIFS Ar) in X is defined as
Ar = {⟨x,MA(x),NA(x); r⟩|x ∈ X}, where MA : X → [0, 1] and NA : X → [0, 1] are membership
function and non-membership function, respectively such that 0 ≤ MA(x) +NA(x) ≤ 1 and r ∈ [0,

√
2]

is a radius of the circle around each element x ∈ X . The collection of all CIFSs is expressed by CIFS(X).
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Figure 1: Representation space of q-ROFS.

Note that if r = 0, then A0 is IFS. Alternatively, CIFS can also be defined as the following ex-
pression. Let L∗ =

{
⟨a, b⟩|a, b ∈ [0, 1] and a + b ≤ 1

}
, then Ar could be expressed in the form

Ar =
{
⟨x,Or(MA,NA)⟩|x ∈ X

}
, where,

Or(MA,NA) =
{
⟨a, b⟩|a, b ∈ [0, 1] and

√
(MA(x)− a)2 + (NA(x)− b)2 ≤ r

}
∩ L∗.

3 Circular q-Rung Orthopair Fuzzy Sets

In this section, we shall define a generalization of CIFS for non-empty set X based on q-ROFS
which we call Cq-ROFS. Furthermore, we introduce the relations and operations over Cq-ROFS.

Definition 3.1. A circular q-rung orthopair fuzzy set A∗
r (denoted Cq-ROFS A∗

r) in X is defined as an
object of the form:

A∗
r =

{
⟨x,MA∗(x),NA∗(x); r⟩|x ∈ X

}
,

where MA∗ : X → [0, 1] and NA∗ : X → [0, 1] denoted the degrees of membership and non-membership
of the element x ∈ X , respectively, such that 0 ≤ Mq

A∗(x) + N q
A∗(x) ≤ 1 for positive integer q ≥ 1.

r ∈ [0,
√
2] is the radius of the circle around the point (MA∗(x),NA∗(x)).

The value of HA∗(x) = q
√
1−Mq

A∗(x)−N q
A∗(x) is the hesitancy degree. The collection of all Cq-

ROFSs is expressed by Cq-ROFS(q,X).

Note that, if q = 1 then Cq-ROFS(1, X)=CIFS(X). The geometric interpretation of Cq-ROFS(q,X)
is depicted in Figure 2.

Remark 3.1. It is evident for every a, b ∈ [0, 1] with r ∈ [0,
√
2], and q ≥ 1 , if 0 ≤ a + b ≤ 1 then

we get 0 ≤ aq + bq ≤ 1, since aq ≤ a and bq ≤ b. This implies that, if A∗
r ∈ CIFS(X) then also

A∗
r ∈ Cq −ROFS(q,X).
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Figure 2: Geometrical interpretation of Cq-ROFS(q,X) for integer q ≥ 1.

The comparisons between Cq-ROFS and other different sets (i.e., q-ROFS, CIFS and IFS) are
presented in Table 1. Notably, Cq-ROFS demonstrates generality by encompassing not only the
case of uncertainty and indeterminacy, as in IFS (a+ b ≤ 1) , but also includes q-ROFS (a+ b > 1)
and CIFS, considering an imprecise region around the point (MA∗(x),NA∗(x)) with radius r ≥ 0.

Table 1: The comparisons of Cq-ROFS with different sets.

Cq-ROFS q-ROFS CIFS IFS
a+ b ≤ 1 Yes Yes Yes Yes
a+ b > 1 Yes Yes No No
r ≥ 0 Yes No Yes No

In the following, the definition of relations over Cq-ROFS is presented, followed by the defini-
tion of operations over Cq-ROFS.

Definition 3.2. LetA∗
r ,B∗

s ∈ Cq−ROFS for r, s ∈ [0,
√
2]. The relations betweenA∗

r and B∗
s are defined

as follows:

1. A∗
r ⊂ν B∗

s ⇔ (∀x ∈ X)(r = s) and one of the following condition arises,

MA∗(x) < MB∗(x) and NA∗(x) ≥ NB∗(x),

MA∗(x) ≤ MB∗(x) and NA∗(x) > NB∗(x),

MA∗(x) < MB∗(x) and NA∗(x) > NB∗(x).

2. A∗
r ⊂ρ B∗

s ⇔ (∀x ∈ X)(r < s) andMA∗(x) = MB∗(x) and NA∗(x) = NB∗(x).

3. A∗
r ⊂ B∗

s ⇔ (∀x ∈ X)(r < s) and one of the following condition arises,

MA∗(x) < MB∗(x) and NA∗(x) ≥ NB∗(x),

MA∗(x) ≤ MB∗(x) and NA∗(x) > NB∗(x),

MA∗(x) < MB∗(x) and NA∗(x) > NB∗(x).

367



B. Yusoff et al. Malaysian J. Math. Sci. 17(3): 363–378(2023) 363 - 378

4. A∗
r =ν B∗

s ⇔ (∀x ∈ X) andMA∗(x) = MB∗(x) and NA∗(x) = NB∗(x).

5. A∗
r =ρ B∗

s ⇔ r = s.

6. A∗
r = A∗

s ⇔ (∀x ∈ X)(r = s) andMA∗(x) = MB∗(x) and NA∗(x) = NB∗(x).

Before defining the general operations for Cq-ROFS,we first establish the operations pertaining
to the radius of Cq-ROFS. In a previouswork byAtanassov [9], the radius operations for CIFSwere
defined based onmax andmin, where the radius r, s ∈ [0, 1]. In this work, we propose not only the
max andmin operations but also the algebraic product and algebraic sum as additional operations
for the radius in the Cq-ROFS. Furthermore, we extend the range of the radius r, s ∈ [0,

√
2].

Definition 3.3. Let r, s ∈ [0,
√
2] and q be a positive integer. The algebraic product ⊗ and algebraic sum

⊕ on r and s for Cq-ROFS are defined as follows:

⊗(r, s) =
rs√
2
and ⊕ (r, s) =

(
rq + sq −

(
rs√
2

)q) 1
q

.

It can be observed that the above radius operations satisfy the boundary condition. This is
further supported by the following theorem, which provides proof for these operations.

Theorem 3.1. Let r, s ∈ [0,
√
2], then ⊗(r, s),⊕(r, s) ∈ [0,

√
2].

Proof. To prove these operations, we must show that for r, s ∈ [0,
√
2] and positive integer q ≥ 1,

the boundary condition for ⊗(r, s),⊕(r, s) ∈ [0,
√
2] is valid. It is clear that for r, s = 0, then

Cq-ROFSs are reduced to q-ROFSs, which satisfy the boundary condition. For r, s =
√
2 , then

⊗(r, s) =
rs√
2
=

√
2. In the case of⊕(r, s), we must prove that rq + sq −

(
rs√
2

)q

≤
√
2
q . Using the

contradiction, suppose it is true for rq + sq −
(

rs√
2

)q

>
√
2
q such that:

rq + sq −
(

rs√
2

)q

−
√
2
q
> 0,

√
2
q
rq +

√
2
q
sq − rqsq −

√
2
2q

> 0,(
rq −

√
2
q
)(√

2
q
− sq

)
> 0.

For positive integer q ≥ 1 and 0 ≤ r, s ≤
√
2 then, we obtain

(
rq −

√
2
q
)(√

2
q − sq

)
≤ 0. There-

fore, it is contradicted, hence, rq + sq −
(

rs√
2

)q

≤
√
2
q . This implies,

0 ≤ ⊕(r, s) =

(
rq + sq −

(
rs√
2

)q) 1
q

≤
(√

2
q
) 1

q

=
√
2.

Remark 3.2. The max and min operations are rather straightforward. For r, s ∈ [0,
√
2], we have max(r, s)

and min(r, s) which satisfy the boundary condition (see [9]).

Next, we define the general operations over Cq-ROFSs based on the radius operations in Defi-
nition 3.3.
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Definition 3.4. Let A∗
r ,B∗

s ∈ Cq-ROFS with r, s ∈ [0,
√
2] and positive integer q ≥ 1. For any x ∈ X

where ∝∈ {min,max,⊕,⊗} represents the radius operator, the operations between A∗
r and B∗

s can be
defined as follows:

1. ¬A∗
r =

{
⟨x,NA∗(x),MA∗(x); r⟩

}
.

2. A∗
r ∩∝ B∗

s =
{
⟨x,min

{
MA∗(x),MB∗(x)

}
,max

{
NA∗(x),NB∗(x)

}
;∝ (r, s)⟩

}
.

3. A∗
r ∪∝ B∗

s =
{
⟨x,max

{
MA∗(x),MB∗(x)

}
,min

{
NA∗(x),NB∗(x)

}
;∝ (r, s)⟩

}
.

4. A∗
r +∝ B∗

s =
{
⟨x,

(
Mq

A∗(x) +Mq
B∗(x)−Mq

A∗(x)Mq
B∗(x)

) 1
q

,NA∗(x) · NB∗(x);∝ (r, s)⟩
}
.

5. A∗
r ◦∝ B∗

s =
{
⟨x,MA∗(x) · MB∗(x),

(
N q

A∗(x) +N q
B∗(x)−N q

A∗(x)N q
B∗(x)

) 1
q

;∝ (r, s)⟩
}
.

Theorem3.2. LetA∗
r ,B∗

s ∈ Cq-ROFS with r, s ∈ [0,
√
2]. For allϕ ∈ {∩,∪,+, ◦} and∝∈ {min,max,⊗,⊕},

then ¬A∗
r , A∗

rϕ∝B∗
s ∈ Cq-ROFS.

Proof. Here, we focus only on the operations related toM(x) andN (x) for every x ∈ X . The proof
for the radius operations is already covered in Theorem 3.1.

1. For ¬A∗
r , the proof is straightforward.

2. For A∗
r ∩∝ B∗

s , suppose

max
{
NA∗(x),NB∗(x)

}
= NA∗(x) and min

{
MA∗(x),MB∗(x)

}
≤ MA∗(x),

then we have:

0 ≤
(
MA∗

r∩∝B∗
s
(x)

)q

+
(
NA∗

r∩∝B∗
s
(x)

)q

=
(
min

{
MA∗(x),MB∗(x)

})q

+
(
NA∗(x)

)q

≤ (MA∗(x))
q
+ (NA∗(x))

q ≤ 1,

which satisfy the boundary condition. Similarly, if max
{
NA∗(x),NB∗(x)

}
= NB∗(x) and

min
{
MA∗(x),MB∗(x)

}
≤ MB∗(x), then we obtain 0 ≤ (MB∗(x))

q
+ (NB∗(x))

q ≤ 1.

3. We can prove in the same way for A∗
r ∪∝ B∗

s .

4. Next, for operations +∝ and ◦∝, we have:

0 ≤
(
MA∗

r+∝B∗
s
(x)

)q

+
(
NA∗

r+∝B∗
s
(x)

)q

,

= Mq
A∗(x) +Mq

B∗(x)−Mq
A∗(x).Mq

B∗(x) +N q
A∗(x).N q

B∗(x),

≤ Mq
A∗(x) +Mq

B∗(x)−Mq
A∗(x).Mq

B∗(x) +
(
1−Mq

A∗(x)
)
.
(
1−Mq

B∗(x)
)
= 1.

5. Likewise, A∗
r ◦∝ B∗

s can be proved analogously.

This completes the proof.

369



B. Yusoff et al. Malaysian J. Math. Sci. 17(3): 363–378(2023) 363 - 378

Note that the operations defined above assume that the same q is considered (for any q ≥ 1).
However, in the case of different rungs, we can implement q = max(q1, q2) where q1 and q2 are
elements of the set of rungs. This was suggested by Yager [29] for the case of q-ROFS to ensure
inclusivity of all rungs under consideration. Similarly, this also applies to the case of Cq-ROFS.

Remark 3.3. Assume that A∗
r ∈ Cq-ROFS(q1, X) and B∗

s ∈ Cq-ROFS(q2, X) have different rungs q1
and q2. Any operations performed on A∗

r and B∗
s result in Cq-ROFS(q,X), where q = max(q1, q2).

The next discussion concerns the algebraic properties that apply to these operations. The prop-
erties are evidenced in, among others, idempotency, inclusion, and absorption.

Theorem 3.3. (Idempotency) For any Cq-ROFSs A∗
r with r ∈ [0,

√
2], given that ϕ ∈ {∩,∪,+, ◦} and

∝∈ {min,max,⊗,⊕}, then A∗
rϕ∝A∗

r = A∗
r .

Proof. The proof follows immediately from Definitions 3.3 and 3.4.

Lemma 3.1. Let r, s ∈ [0,
√
2] and positive integer q ≥ 1, then the following inequalities hold:

1. ⊗(r, s) < r or s.

2. ⊕(r, s) > r or s.

Proof. We prove Lemma 3.1 by contradiction.

1. Suppose ⊗(r, s) =
rs√
2
> r, then:

rs√
2
− r > 0,

r√
2

(
s−

√
2
)
> 0.

Note that, since s ∈ [0,
√
2], then we have (s−

√
2) ≤ 0. Therefore, the assumption is wrong

and ⊗(r, s) < r. Similarly, ⊗(r, s) < s can be proved in the same way.

2. Suppose ⊕(r, s) < r =

(
rq + sq −

(
rs√
2

)q) 1
q

< r, then:

rq + sq −
(

rs√
2

)q

< rq,

sq
√
2
q

(√
2
q
− rq

)
< 0.

Since r ∈ [0,
√
2], then

(√
2
q − rq

)
≥ 0. Hence, the assumption is wrong and ⊕(r, s) > r.

Similarly, ⊕(r, s) > s can be proved analogously.

Lemma 3.1 is used to determine the consistency of inclusion properties in Cq-ROFS.
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Theorem3.4. (Inclusion) For every twoCq-ROFSsA∗
r andB∗

s with r, s ∈ [0,
√
2] and∝∈ {min,max,⊗,⊕},

we have:

1. if A∗
r ⊂ B∗

s , then A∗
r ◦∝ B∗

s ⊂ B∗
s ,

2. if A∗
r ⊂ B∗

s , then A∗
r +∝ B∗

s ⊂ B∗
s .

Proof. Let A∗
r ,B∗

s ∈ Cq-ROFS with r, s ∈ [0,
√
2] and A∗

r ⊂ B∗
s such that (∀x ∈ X)(r < s) and

satisfy MA∗(x) < MB∗(x) and NA∗(x) > NB∗(x). For operation A∗
r ◦∝ B∗

s , the following mem-
bership values are obtained, MA∗(x).MB∗(x) < MB∗(x). Analogously, this also applies to non-

membership values, where we obtained
[
N q

A∗(x)+N q
B∗(x)−N q

A∗(x).N q
B∗(x)

] 1
q

> NB∗(x). For the
radius operations, the obtained value for each ∝∈ {min,max,⊗,⊕} can be proved by Definition
3.2. Therefore, it is clear that A∗

r +∝ B∗
s ⊂ B∗

s and similarly A∗
r ◦∝ B∗

s ⊂ B∗
s .

Lemma 3.2. LetA∗
r and B∗

s are Cq-ROFS with r, s ∈ [0,
√
2] and positive integer q ≥ 1, then the following

relations hold:

1. A∗
r ⊂ (A∗

r ∪max B∗
s) ⊂ρ (A∗

r ∪⊕ B∗
s) ;A∗

r ⊂ (A∗
r +max B∗

s) ⊂ρ (A∗
r +⊕ B∗

s),

2. (A∗
r ∩⊗ B∗

s) ⊂ρ (A∗
r ∩min B∗

s) ⊂ A∗
r ; (A∗

r ◦⊗ B∗
s) ⊂ρ (A∗

r ◦min B∗
s) ⊂ A∗

r .

Proof. The validity of Lemma 3.2 follows from the Definition 3.4 and Lemma 3.1.
Since for r, s ∈ [0,

√
2] and positive integer q ≥ 1 then we have:

r ≤ max(r, s) ≤ rq + sq −
(

rs√
2

)q

.

Analogously:

rs√
2
≤ min(r, s) ≤ r.

The proof is now completed.

Theorem 3.5. (Absorption) For every two Cq-ROFS, A∗
r and B∗

s with r, s ∈ [0,
√
2], ϕ ∈ {∪,+},

φ ∈ {∩, ◦} and ∝∈ {min,max,⊗,⊕}, then:

1. A∗
r ◦∝ (A∗

rϕmaxB∗
s) ⊂ A∗

rϕmaxB∗
s ;A∗

r ◦∝ (A∗
rϕ⊕B∗

s) ⊂ A∗
rϕ⊕B∗

s ,

2. A∗
r +∝ (A∗

rϕmaxB∗
s) ⊂ A∗

rϕmaxB∗
s ;A∗

r +∝ (A∗
rϕ⊕B∗

s) ⊂ A∗
rϕ⊕B∗

s ,

3. (A∗
rφ⊗B∗

s) ◦∝ A∗
r ⊂ A∗

r ; (A∗
rφminB∗

s) ◦∝ A∗
r ⊂ A∗

r ,

4. (A∗
rφ⊗B∗

s) +∝ A∗
r ⊂ A∗

r ; (A∗
rφminB∗

s) +∝ A∗
r ⊂ A∗

r .

Proof. The proof can be demonstrated by utilizing Lemma 3.2 and Theorem 3.4.
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4 Some Modal Operators Over Cq-ROFS

In this section, some of modal operators are defined for Cq-ROFS over the universal set X .
Previously, Atanassov [9] defined "necessity" and "possibility" followed by the definition ofmodal
operators for CIFS. Other studies have also defined the type of modal operators that applies to
q-ROFS. In the following, based on the existing definitions, we define the modal operators for
Cq-ROFS accompanied by their corresponding properties.

Definition 4.1. For any Cq-ROFS A∗
r with positive integer q ≥ 1 and λ, γ ∈ [0, 1] for λ+ γ ≤ 1 be any

real number, then some of modal operators over Cq-ROFS are defined as follows:

1. □A∗
r =

{
⟨x,MA∗(x), (1−Mq

A∗(x))
1
q ; r⟩|x ∈ X

}
.

2. ♢A∗
r =

{
⟨x, (1−N q

A∗(x))
1
q ,NA∗(x); r⟩|x ∈ X

}
.

3. Dλ(A∗
r) =

{
⟨x, (Mq

A∗(x) + λ.Hq
A∗(x))

1
q , (N q

A∗(x) + (1− λ).Hq
A∗(x))

1
q ; r⟩|x ∈ X

}
.

4. Fλ,γ(A∗
r) =

{
⟨x, (Mq

A∗(x) + λ.Hq
A∗(x))

1
q , (N q

A∗(x) + γ.Hq
A∗(x))

1
q ; r⟩|x ∈ X

}
.

5. Gλ,γ(A∗
r) =

{
⟨x, λ

1
q .MA∗(x), γ

1
q .NA∗(x); r⟩|s ∈ X

}
.

6. Hλ,γ(A∗
r) =

{
⟨x, λ

1
q .MA∗(x), (N q

A∗(x) + γ.Hq
A∗(x))

1
q ; r⟩|s ∈ X

}
.

7. Jλ,γ(A∗
r) =

{
⟨x, (Mq

A∗(x) + λ.Hq
A∗(x))

1
q , γ

1
q .NA∗(x); r⟩|s ∈ X

}
.

Additionally, it must be confirmed that the modal operator specified in Definition 4.1 is also Cq-
ROFS.

Theorem 4.1. The Cq-ROFS operations defined by Definition 4.1 are also Cq-ROFS.

Proof. For A∗
r ∈ Cq-ROFS such that A∗

r =
{
⟨x,MA∗(x),NA∗(x); r⟩|x ∈ X

}
, integer q ≥ 1 and

λ, γ ∈ [0, 1] for λ+ γ ≤ 1, then for each x ∈ X :

1. Since 0 ≤ MA∗(x) ≤ 1 and q ≥ 1, then:

0 ≤ 1−
(
1−Mq

A∗(x)
) 1

q ≤ 1.

Therefore,

Mq
□A∗(x) +N q

□A∗(x) = [MA∗(x)]
q
+

[(
1−Mq

A∗(x)
) 1

q

]q
= Mq

A∗(x) +
(
1−Mq

A∗(x)
)
= 1.

2. The operator ♢A∗
r can be proved analogously.
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3. For any real number λ ∈ [0, 1] and Cq-ROFS Ar, we have 0 ≤ MA∗(x),NA∗(x) ≤ 1 and
0 ≤ Mq

A∗(x) +N q
A∗(x) ≤ 1 which implies that Hq

A∗(x) ≤ 1. Hence,

MDλ(A∗
r)
(x) =

(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q and NDλ(A∗

r)
(x) =

(
N q

A∗(x) + (1− λ).Hq
A∗(x)

) 1
q

.

Furthermore:

Mq
Dλ(A∗

r)
(x) +N q

Dλ(A∗
r)
(x) =

[(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q
]q

+
[(

N q
A∗(x) + (1− λ).Hq

A∗(x)
) 1

q
]q

= Mq
A∗(x) + λ.Hq

A∗(x) +N q
A∗(x) + (1− λ).Hq

A∗(x)

= Mq
A∗(x) +N q

A∗(x) +Hq
A∗(x) = 1.

4. For any real number λ, γ ∈ [0, 1]where λ+γ ≤ 1 and Cq-ROFSA∗
r , we have 0 ≤ MA∗(x) ≤ 1

and 0 ≤ NA∗(x) ≤ 1 and 0 ≤ Mq
A∗(x)+N q

A∗(x) ≤ 1which implies thatHq
A∗(x) ≤ 1. Hence,

MFλ,γ(A∗
r)
(x) =

(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q and NFλ,γ(A∗

r)
(x) =

(
N q

A∗(x) + γ.Hq
A∗(x)

) 1
q

.

Furthermore:

Mq
Fλ,γ(A∗

r)
(x) +N q

Fλ,γ(A∗
r)
(x) =

[(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q
]q

+
[(

N q
A∗(x) + γ.Hq

A∗(x)
) 1

q
]q

= Mq
A∗(x) + λ.Hq

A∗(x) +N q
A∗(x) + γ.Hq

A∗(x)

= Mq
A∗(x) +N q

A∗(x) + (λ+ γ)Hq
A∗(x) ≤ 1.

5. Analogously to Proof 4), whereMGλ,γ(A∗
r)
(x) = λ

1
q .MA∗(x) andNGλ,γ(A∗

r)
(x) = γ

1
q .NA∗(x),

then we obtain:

MGλ,γ(A∗
r)
(x) +NGλ,γ(A∗

r)
(x) =

[
λ

1
q .MA∗(x)

]q
+

[
γ

1
q .NA∗(x)

]q
= λ.Mq

A∗(x) + γ.N q
A∗(x)

≤ Mq
A∗(x) +N q

A∗(x) = 1.

6. Likewise,

MHλ,γ(A∗
r)
(x) = λ

1
q .MA∗(x) and NHλ,γ(A∗

r)
(x) =

(
N q

A∗(x) + γ.Hq
A∗(x)

) 1
q

,

then we obtained:

MHλ,γ(A∗
r)
(x) +NHλ,γ(A∗

r)
(x) =

[
λ

1
q .MA∗(x)

]q
+

[(
N q

A∗(x) + γ.Hq
A∗(x)

) 1
q
]q

= λ.Mq
A∗(x) +N q

A∗(x) + γ.Hq
A∗(x)

≤ Mq
A∗(x) +N q

A∗(x) +Hq
A∗(x) = 1.

7. Let,

MJλ,γ(A∗
r)
(x) =

(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q and NJλ,γ(A∗

r)
(x) = γ

1
q .NA∗(x).

Then we obtain:

MJλ,γ(A∗
r)
(x) +NJλ,γ(A∗

r)
(x) =

[(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q
]q

+
[
γ

1
q .NA∗(x)

]q
= Mq

A∗(x) + λ.Hq
A∗(x) + γ.N q

A∗(x)

≤ Mq
A∗(x) +Hq

A∗(x) +N q
A∗(x) = 1.
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Hence, it is proven that the operations defined in Definiton 4.1 are also Cq-ROFS.

In the following, the relations, and basic properties of the modal operators for Cq-ROFS are
presented.

Theorem 4.2. For any Cq-ROFS A∗
r and every λ, γ ∈ [0, 1]:

1) λ ≤ γ ⇒ Dλ(A∗
r) ⊆ Dγ(A∗

r).

2) D0(A∗
r) = □A∗

r and D1(A∗
r) = ♢A∗

r .

3) 0 ≤ η ≤ λ ⇒ Fη,γ(A∗
r) ⊆ Fλ,γ(A∗

r).

4) 0 ≤ η ≤ γ ⇒ Fλ,η(A∗
r) ⊇ Fλ,γ(A∗

r).

5) Fλ,1−λ(A∗
r) = Dλ(A∗

r),

6) F0,1(A∗
r) = □A∗

r and F1,0(A∗
r) = ♢A∗

r .

7) λ ≤ η ⇒ Gλ,γ(A∗
r) ⊆ Gη,γ(A∗

r).

8) γ ≤ η ⇒ Gλ,γ(A∗
r) ⊇ Gλ,η(A∗

r).

Proof. Here, proofs are given only in a few parts, with the assumption that the other parts are
analogous for every x ∈ X .

1) For the Definition 4.1 and λ, γ ∈ [0, 1] we get:

Dλ(A∗
r) =

{
x,

(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q

,
(
N q

A∗(x) + (1− λ).Hq
A∗(x)

) 1
q

; r
}
, and

Dγ(A∗
r) =

{
x,

(
Mq

A∗(x) + γ.Hq
A∗(x)

) 1
q

,
(
N q

A∗(x) + (1− γ).Hq
A∗(x)

) 1
q

; r
}
.

Since λ ≤ γ then λ.Hq
A∗(x) ≤ γ.Hq

A∗(x) and therefore, it is proven.

2)

D0(A∗
r) =

{
x,

(
Mq

A∗(x) + 0.Hq
A∗(x)

) 1
q

,
(
N q

A∗(x) + (1− 0).Hq
A∗(x)

) 1
q

; r
}

=
{
x,MA∗(x),

(
N q

A∗(x) + 1−Mq
A∗(x)−N q

A∗(x)
) 1

q

; r
}

=
{
x,MA∗(x),

(
1−Mq

A∗(x)
) 1

q

; r
}
= □A∗

r .

The same applies to D1(A∗
r) = ♢A∗

r .

Proofs 3) and 4) are analogous to proof 1).

5) Fλ,1−λ(A∗
r) =

{
x,

(
Mq

A∗(x) + λ.Hq
A∗(x)

) 1
q

,
(
N q

A∗(x) + (1− λ).Hq
A∗(x)

) 1
q

; r
}
= Dλ(A∗

r).
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6)

F0,1(A∗
r) =

{
x,

(
Mq

A∗(x) + 0.Hq
A∗(x)

) 1
q

,
(
N q

A∗(x) + 1.Hq
A∗(x)

) 1
q

; r
}

=
{
x,Mq

A∗(x),
(
N q

A∗(x) + 1−Mq
A∗(x)−N q

A∗(x)
) 1

q

; r
}
= □A∗

r .

Analogously, F1,0(A∗
r) = ♢A∗

r .

Proofs 7) and 8) are similar to Proof 1). Therefore, the details are omitted.

5 Conclusion and Future Studies

This article introduces a Cq-ROFS as a new and more flexible extension of CIFS and q-ROFS.
We present the operations and relations for Cq-ROFS, examine modal operators, and investigate
their properties. The key features of this set are that it not only expands the space of the IFIT to
provide greater flexibility in handling data but also takes into account the imprecise M and N
degrees. In future research, we plan to propose additional operators for Cq-ROFS, particularly the
aggregation operators and study their properties. These operators include the ordered weighted
averaging (OWA) operator and its families, as well as the Sugeno integral and the Choquet inte-
gral [27, 29]. Moreover, we aim to broaden the range of applications for this set, encompassing
various fields such as decision-making problems [22, 4] and geometric modeling [31]. Addition-
ally, the expansion of this set under proximity measures, such as distance and similarity measures
[5], as well as ranking methods, including score and accuracy functions [6] within the Cq-ROFS
environment.
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6 Appendix

Table 2: List of abbreviations.

Abbreviations Explanations
FS Fuzzy Sets
IFS Intuitionistic Fuzzy Set
PFS Pythagorean Fuzzy Set
FFS Fermatean Fuzzy Set

q-ROFS q-Rung Orthopair Fuzzy Set
IVIFS Interval-Valued Intuitionistic Fuzzy Set
CIFS Circular Intuitionistic Fuzzy Set

Cq-ROFS Circular q-Rung Orthopair Fuzzy Set
IFIT Intuitionistic Fuzzy Interpretation Triangle

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution
VIKOR VIekriterijumsko KOmpromisno Rangiranje

(or Multicriteria Optimization and Compromise Solution)
AHP Analytic Hierarchy Process

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluation
MCDM Multiple Criteria Decision Making
OWA Ordered Weighted Averaging
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